The space of mappings
Task number: 2505
Let \(X\) be an arbitrary non-empty set and let \((\mathbb K,+,\cdot)\) be a field.
Denote \(\mathbb K^X\) the set of all mappings \(f: X\to \mathbb K\).
Define the sum \(\oplus\) in the \(\mathbb K^X\) and the multiplication \(\odot:\mathbb K\times \mathbb K^X \to \mathbb K^X\) as follows:
\[(f \oplus g)(x)=f(x)+g(x),\qquad\qquad (a \odot f)(x)=a\cdot f(x).\]
Variant 1
Show that \((\mathbb K^X,\oplus,\odot)\) is a vector space.
Variant 2
Which vector space we get if \(X\) is finite?
Variant 3
Which vector space we get if \(X=\mathbb N\)?
Variant 4
Which vector space we get if \(\mathbb K,X=\mathbb R\)?