\((p+q)(x)=3x^3+3x^2+x+3\)
\((p-q)(x)=3x^3+x^2+2x+4\)
\((pq)(x)=3x^5+3x^4+4x^3+3x^2+2\)
The powers greater than 5 could be eliminated by the Fermat's Little Theorem and get a polynomial with the same values for all \(x\in \mathbb Z_5\):
\(3x^5+3x^4+4x^3+3x^2+2 \to 3x^4+4x^3+3x^2+3x+2\)
\(p(x)=q(x)\cdot(3x+1)+(x+4)\).