Řady
Úloha číslo: 2895
Sečtěte řady
Varianta 1
\(\displaystyle \sum_{n=0}^{\infty}\frac{3^n-2^{n+1}}{6^n} \).
Varianta 2
\(\displaystyle \sum_{n=2}^\infty\frac{1}{n^2-1}. \)
Varianta 3
\(\displaystyle \sum_{n=1}^{\infty}\frac1{4n^2-1} \).
Varianta 4
\(\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+5)}. \)
Varianta 5
\(\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)(n+3)}. \)
Varianta 6
\(\displaystyle \sum_{n=1}^{\infty}\frac{2n-1}{2^n} \).