Suprema a infima konkrétních množin
Úloha číslo: 2817
V oboru reálných čísel určete suprema a infima následujících množin (pokud existují). Jsou to zároveň maxima či minima těchto množin?
Varianta 1
\(\displaystyle M=\left\{\frac1n,n\in\mathbb N\right\}\)
Varianta 2
\(\displaystyle M=\left\{-\frac1n,n\in\mathbb N\right\}\)
Varianta 3
\( M=\{0{,}3; 0{,}33; 0{,}333; 0{,}3333; …\}\)
Varianta 4
\(\displaystyle M=\left\{q: q<\sqrt{3},\ q\in\mathbb Q\right\}\)
Varianta 5
\( M=\{\sin x: x\in \langle 0, 2\pi)\}\)
Varianta 6
\( M=\{\sin x: x\in (0, 2\pi)\}\)
Varianta 7
\( M=\{\sin x: x\in (0, \pi)\}\)
Varianta 8
\(\displaystyle M=\left\{1-\frac1{n^2},n\in\mathbb N\right\}\)
Varianta 9
\(\displaystyle M=\left\{\frac{n-1}n,n\in\mathbb Z\setminus\{0\}\right\}\)
Varianta 10
\(\displaystyle M=\left\{\frac{p}{p+q},p,q\in\mathbb N\right\}\)
Varianta 11
\(\displaystyle M=\left\{\frac{n+(-1)^n}n,n\in\mathbb N\right\}\)
Varianta 12
\(\displaystyle M=\left\{n^{(-1)^n},n\in\mathbb N\right\}\)
Varianta 13
\( M=\{n^2-m^2: n,m\in \mathbb N\}\)
Varianta 14
\( M=\{n^2-m^2: n,m\in \mathbb N, n>m\}\)
Varianta 15
\( M=\{n^2-m^2: n,m\in \mathbb N, n\le m\}\)
Varianta 16
\( M=\{2^{-n}+3^{-n}: n\in \mathbb N\}\)
Varianta 17
\( M=\{2^{-n}+3^{-n}: n\in \mathbb Z\}\)
Varianta 18
\( M=\{5^{(-1)^j3^k}: j,k\in \mathbb Z\}\)
Varianta 19
\(\displaystyle M=\left\{\cos\left(\frac{n+1}n\pi\right),n\in\mathbb N\right\}\)
Varianta 20
\(\displaystyle M=\left\{\cos\left(\frac{n+1}n\pi\right),n\in\mathbb N, n \text{ sudé}\right\}\)
Varianta 21
\(\displaystyle M=\left\{\cos\left(\frac{n+1}n\pi\right),n\in\mathbb N, n \text{ liché}\right\}\)