Sumy
Úloha číslo: 2787
Dokažte matematickou indukcí:
Varianta 1
\( \displaystyle \sum_{i=1}^n i = \frac{n(n+1)}{2}. \)
Varianta 2
\( \displaystyle \sum_{i=1}^n (2i-1) = n^2. \)
Varianta 3
\( \displaystyle \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}6. \)
Varianta 4
\( \displaystyle \sum_{i=1}^n i^3 = \left(\frac{n(n+1)}2\right)^2. \)